Arithmetic Progressions of Three Squares

نویسنده

  • KEITH CONRAD
چکیده

In this list there is an arithmetic progression: 1, 25, 49 (common difference 24). If we search further along, another arithmetic progression of squares is found: 289, 625, 961 (common difference 336). Yet another is 529, 1369, 2209 (common difference 840). How can these examples, and all others, be found? In Section 2 we will use plane geometry to describe the 3-term arithmetic progressions of (nonzero) perfect squares in terms of rational points on the circle x2+y2 = 2. Since a2, b2, c2 is an arithmetic progression if and only if (a/d)2, (b/d)2, (c/d)2 is an arithmetic progression, where d 6= 0, there is not much difference between integral and rational arithmetic progressions of three squares, and in Section 3 we will describe 3-term arithmetic progressions of rational squares with a fixed common difference in terms of rational points on elliptic curves (Corollary 3.6). In the appendix, the link between elliptic curves and arithmetic progressions with a fixed common difference is revisited using projective geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 43 INTEGERS 12 ( 2012 ) ARITHMETIC PROGRESSIONS IN THE POLYGONAL NUMBERS Kenneth

In this paper, we investigate arithmetic progressions in the polygonal numbers with a fixed number of sides. We first show that four-term arithmetic progressions cannot exist. We then describe explicitly how to find all three-term arithmetic progressions. Finally, we show that not only are there infinitely many three-term arithmetic progressions, but that there are infinitely many three-term ar...

متن کامل

Progressions of squares

Some generalizations of arithmetic progressions are: quasi-progressions, combinatorial progressions, semi-progressions, and descending waves. (The definitions are given below.) We study the occurrence of these progressions in the set of squares of integers.

متن کامل

Words avoiding repetitions in arithmetic progressions

Carpi constructed an infinite word over a 4-letter alphabet that avoids squares in all subsequences indexed by arithmetic progressions of odd difference. We show a connection between Carpi’s construction and the paperfolding words. We extend Carpi’s result by constructing uncountably many words that avoid squares in arithmetic progressions of odd difference. We also construct infinite words avo...

متن کامل

Arithmetic Progressions of Four Squares

Suppose a, b, c, and d are rational numbers such that a2, b2, c2, and d2 form an arithmetic progression: the differences b2−a2, c2−b2, and d2−c2 are equal. One possibility is that the arithmetic progression is constant: a2, a2, a2, a2. Are there arithmetic progressions of four rational squares which are not constant? This question was first raised by Fermat in 1640. There are no such progressio...

متن کامل

Arithmetic progressions of four squares over quadratic fields

Let d be a squarefree integer. Does there exist four squares in arithmetic progression over Q( √ d )? We shall give a partial answer to this question, depending on the value of d. In the affirmative case, we construct explicit arithmetic progressions consisting of four squares over Q( √ d ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008